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Abstract  

 
Agricultural disasters are the adverse reaction of crop to en-

vironmental conditions that are unfavorable to their growth, 

such as drought, flooding, extreme temperatures, disease and 

insect infestation. With the advancement of the agricultural 

information technology, remote sensing system, and advanc-

es in data analysis techniques, these drivers have inspired 

new thinking and impetus to the agricultural disasters moni-

toring. Aiming to generalize the knowledge and provide per-

spectives for remote sensing of agricultural disasters, this 

paper had summarized data functionalities, data processing 

methodologies and recent advances of agricultural remote 

sensing. Literatures on remote sensing of agricultural disas-
ters monitoring were then reviewed. Judging from the devel-

opment trend, agricultural remote sensing had been signifi-

cantly benefit from rapid development of information tech-

nologies, availability of multi-source data, Precision Agricul-

ture equipment, and the integration with physical model. 

These advances suggested many opportunities and challenges 

for remote sensing in agricultural disasters monitoring. The 

development for remote sensing of agricultural disasters 

should be paid more attention to the following aspects: (1) 

fully understanding the merit of remote sensing; (2) quantify-

ing and validating of disasters monitoring; (3) strengthening 
early warning capability; (4) fusing multi-sources data; (5) 

bridging the gaps between experimental studies and practical 

applications. 

 

 

1 Introduction 
 

With the theoretical breakthroughs in plant spectrosco-

py, plant biology and ecology had been given quantitative 
description by spectral responses of pigment variation, phys-

iology or morphology changes [1,2]. A variety of biophysi-

cal/biochemical characteristics of vegetation can be quanti-

fied by electromagnetic spectrum information from detecting 

sensor [3-7]. Therefore, the cognition based on the correla-

tion between plant physiology and spectral response indicat-

ed that detection and prediction models can be established for 

monitoring crop growth, stress status and yield forecasting 

[2,7-11].  

Large scale remote sensing monitoring on agriculture 

was proved beneficial for policy making and economic de-

velopment half a century ago. From the end of 20th century, 

remote sensing had been widely adopted for agricultural re-

sources investigation, crop yield estimation, and 

agrometeorological disasters monitoring [5,12-14]. At pre-
sent, satellite remote sensing has provided adequate spectral 

coverage spanning visible (VIS), near infrared (NIR), ther-

mal infrared (TIR) and microwave (e.g., Synthetic Aperture 

Radar, SAR) bands. Although the existing satellites had not 

been solely designed for observing natural disasters, global 

satellite-materials for earth observation had been already 

adopted for disasters management [12,13,15]. Currently, the 

on-orbit satellite platforms (geostationary and polar-orbiting) 

have provided remote sensing data for earth system parame-

ters acquisition, evaluation, and integration. They can be 

applied in retrieval of meteorological parameters (e.g., radia-
tion, precipitation, temperature), vegetation parameters (e.g., 

leaf area index (LAI)), and soil moisture[12,13], which dedi-

cated to timely detection of droughts, frost, forest fires and 

other extreme events. Timely monitoring, early warning and 

forecasting of agricultural disasters are critical for effective 

crop failures assessment and decision making; enhancing the 

forecasting capability and establishing emergency response 

system for agriculture will be of benefit for stability of civil 

economy and society development [10,13,16].  

Agricultural disasters are generally a dynamic process 

that requires frequent observation; temporally continuous 

remote sensing data allow assessment of regional vegetation 
condition. However, most of agricultural disasters cannot be 

viewed as physical phenomenon via intuitive remote sensing 

observation; crop growth monitoring and yield formation 

have strong relationship with climate condition. For instance, 

low temperature climate would affect crop development and 

sterility; high temperature and humidity would induce dis-

eases and pests [5,13,17]. Therefore, continuous remote sens-

ing observations are required for monitoring those unfavora-

ble weather event. 

Due to their frequent occurrences, timely and accurate 

prediction for agricultural disasters is of great significance 
for reducing losses; and ensuring sustainable development 

for agricultural production [12,18]. However, the occurrences 
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and extent of agricultural disasters depend not only on 

weather elements, but also on geographical background (e.g., 

altitude), crop growth status, and local crop management 

practice. Geographical information system (GIS) had been 

recognized as a powerful tool for integrating remote sensing 

data and the auxiliary data. It can manipulate information 
from different sources, like agro-meteorological databases, 

remote sensing or digital maps; and visualize the behavior in 

geo-spatial disasters model [12,19]. The perception of disas-

ters risk is critical for precautions and preventions then indi-

cate rational solutions. Researchers utilize remote sensing 

and GIS model to perform disasters risk assessment, spatially 

characterizing potential cautious areas [12-14,16,19,20]. Re-

search cases such as identifying crop-producing area that is 

potentially experiencing severe disease [21]; identifying the 

geographical factors that cause low temperature injury; and 

social-economic driving forces that cause flood occurrence 

risk [13,22,23], etc. More often than not, for a large scale 
observation, remote sensing is used as a crucial data source 

for disaster risk management, combined with GIS and physi-

cal models (e.g., meteorological model, crop growth model, 

or hydrological model) (e.g., meteorological model, crop 

growth model, or hydrological model) [3,5,6,24-28].  

In recent years, remote sensing techniques had ad-

vanced including radiometric/geometric correction, detection 

methodologies, and especially computational facilities which 

generated great benefit in remote sensing of agricultural ap-

plication [4,5,13,29-32]. In addition, remote sensing of agri-

culture had been developed as a multi-sources, multi-scales, 
and multi-disciplinary reference that spans fields of geogra-

phy, meteorology, biology, and somewhat related to infor-

mation sciences. Nowadays, remote sensing data can be used 

to acquire crop growth status, characterize cropping system 

[33], monitor crop phenology [34], retrieve air temperature 

[35,36], measure precipitation [37]; those measurements are 

environmental indicators for agricultural disasters in agro-

meteorology. Besides, by integrating multi-sources observa-

tion and physical modeling it is helpful for understanding the 

complex consequences from hypothesized disaster scenarios 

[14]. Current agricultural disaster management is primarily 
meant to assess physical damage to crop area; however, dis-

aster management cannot be solved solely by remote sensing; 

the susceptibility of other critical elements, such as social 

structures, economic activities, should be introduced in con-

ceptual risk management frameworks [38]. 

As briefly introduced above, the motivation of writing 

this review paper is to address an important topic on remote 

sensing in disaster reduction and mitigation. Even though a 

lot of problems related to the entitled topic remained un-

solved, previous studies had made a lot of contribution for 

understanding problem. This paper was not aiming to address 

a specific methodology or focus on a specific type of disas-
ter; neither to provide critical analysis on study cases. In-

stead, bridging the knowledge gaps in remote sensing of ag-

riculture disasters is the scope of this paper. It also tried to 

provide an insightful perspective on how to cope with the 

challenges and take full advantage of the emerging advances. 

At last, hopefully this review paper is suggestive and sup-

portive for the readers, and proposed future direction for the 

remote sensing of agricultural applications. 

 

2 Data functionalities and methodolo-

gies 
 

2.1 Remote sensing data overview  
 

Remote sensing of agriculture is generally classified by 

the platform for mounting remote sensors, including satellite, 

aerial, and ground based platforms (see Figure 1). Three 

basic questions should be answered before choosing remote 

sensing data or starting a research project: (1) How much 

spatial coverage is needed? (2) What spectral coverage 

makes sense? (3) What spatial resolution of remote sensing 

data is necessary? The key to the successful application of 

remotely sensed data for detecting plant stress is to match the 
appropriate sensor and analysis methods to the information 

requirements [39]. Robust, low-cost, and real-time sensing 

systems are preferably needed for implementing various ag-

ricultural disasters monitoring [40]. 

 
Figure 1. Illustration of electromagnetic spectral range, associated 
with sensors and platforms. 
 

Multispectral optical remote sensing data play a crucial 
role in agricultural applications. The development of high 

spatial resolution is appealing at these days (e.g., 

WorldView, RapidEye). Compared to multispectral remote 

sensing, hyperspectral sensing is a relatively new technology 

that is capable of collecting narrow electromagnetic spectrum 

information to reconstruct a contiguous spectrum; it is capa-

ble of discriminating very fine ground features [41,42]. Spec-

troscopic image acquired from hyperspectral sensors have 

been used for many aspects in agriculture: estimating crop 

vigor and yield; discrimination between crops, weeds, resi-

due, and soil; quantitative measurements of crop water con-
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tent and leaf area index [39,43]; diagnosis of low temperature 

stresses in crop [44]. 

The thermal infrared wavelength usually ranges from 8 

to 14 μm; thermal emission radiometer had been implement-

ed on crop leaf and canopy levels to detect thermal-based 

spectral characteristics which indicate water deficiency and 
crop health status [2,45]. Thermal infrared Satellite data ap-

pear as valuable tool for vegetation growth and conditions 

assessment via retrieval of land surface temperature and es-

timation of evapotranspiration (ET) by various modeling 

approaches. Landsat, ASTER, and MODIS are well-known 

thermal infrared data. Land surface temperature (LST) can be 

used for agro-meteorological applications such as mapping of 

extreme high/low temperature weather events, and regional 

heat resources assessment [35,46], etc. Herein, the conver-

sion of satellite-observed land surface temperature to air 

temperature is of interest to the agricultural management 

community [47,48]. 
The distinctive advantage of microwave remote sensing 

data lies in its capability to penetrate cloud cover to monitor 

ground surface. On the basis of the contrast in dielectric con-

stant values of dry and wet soils, passive microwave and 

synthetic aperture radar data are good option for monitoring 

water content in soils and vegetation  [2,5,49]. As soil mois-

ture is crucial variable that related to evaporation, occurrence 

of landslide and flood; recent advances in microwave tech-

nology has demonstrated its ability to measure soil moisture 

under a variety of topographic and vegetative cover 

[5,13,19,49-51]. The AMSR-E and the SMOS provides glob-
al maps of soil moisture with specified accuracy, sensitivity, 

and spatial coverage [19]. Passive microwave is an ideal data 

source for rainfall monitoring, e.g., the microwave imager 

Tropical Rainfall Measuring Mission (TRMM) provides 

global precipitation measurement [37]. Additionally, owing 

to the advantage of passive microwave data, a number of 

researches had attempted to retrieve temperature [48,52]. 

Besides, active microwave response data had been demon-

strated a high correlation with crop chlorophyll that can be 

used to detect crop diseases and pests damage [53].  

The development of unmanned aerial vehicles (UAV), 
has received substantial attention. UAV appears to provide a 

good complement to the current remote sensing platforms for 

rapid remote sensing monitoring mission (see Figure 2) at-

tributing to their promising in low-cost and very high resolu-

tions [10,11,54]. The miniaturization of electronics, comput-

ers and sensors has created new opportunities for low altitude 

remote sensing applications [31]. Indeed, the Precision Agri-

culture does gain great benefit from the UAV application, 

such as crop growth monitoring and fertilizer application. It 

is a general technology that can be applied on almost any 

cropping situation, e.g., horticulture [1].  

 
Figure 2. Unmanned aerial vehicles provide real-time and in-situ 
crop monitoring. 
 

2.2 Spectroscopy and spectral analysis 
 

Spectroscopy and spectral analysis are capable of iden-
tifying crop stress because most plants have leaf pigmenta-

tion change and water content reduction when suffering from 

stresses [1,2,8,43,44,55,56]. Consequently, changes in the 

absorptive chemical concentrations provide a knowledge 

basis for changes in plant absorbance, transmittance, and 

reflectance [7,56]. As leaves expand, mature, senesce, their 

spectral properties can be affected owing to physiological 

and morphological changes. Comprehensive explanation on 

the spectral response of plant at leaf/canopy level and the 

characteristics of reflectance had been carried out for decades 

[1,2,10,56], which demonstrating that it is feasible to detect 
specific stress status of crop by means of imaging spectros-

copy.  

Usually, the wavelength range of spectral analysis co-

vers from: visible-infrared (VIR), 0.4-0.7 μm; near infrared 

(NIR), 0.720-2.5 μm; middle infrared (MIR), 3.0-5.7 μm; and 

thermal infrared (TIR), 8.0-15 μm (see Figure 1). Spectral 

analysis had been employed to verify the capability of spec-

tra detail to represent the crop stress or diseases. There are 

several commonly used methods to work with spectrum data: 

(1) Identifying those sensitive wavelengths by establishing 

spectral indices, or taking derivative in spectral range; (2) 

Principal Component Analysis (PCA); (3) Using selected 
bands combination to establish regression model [4,8,57,58]. 

Imaging spectroscopy is feasible to provide a characteristic 

of spectrum as well as intuitive observation of the area. 

Based on spectral analysis and vegetation indices calculation, 

crop stresses under circumstances can be identified, such as 

freeze injury [44], diseases and pests damage [10]. Machine-

learning methodology had been adopted in spectral analysis 

such as Artificial Neural Networks (ANN), support vector 

machine (SVM) [59-61]. Signal-processing methodology 

such as continuous wavelet analysis for the detection of crop 

disease and pest damage had been recognized [62]. Indeed, 
the amount and quality of the available reference samples 

play an important role to obtain accurate prediction model 

[63]. 
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Vegetation Indices (VIs) are combinations of surface re-

flectance at two or more wavelengths designed to highlight a 

particular property of vegetation [4,9,55]. VIs are used to 

detect the presence and relative abundance of pigments, wa-

ter content, or nutrition as expressed in the solar-reflected 

optical spectrum (400 nm to 2500 nm). By comparing the 
results of multi/hyperspectral-derived VIs and field condi-

tions measured on site, researchers can assess which indices 

particularly representing crop properties, and then map out 

their variability in image, which can then be interpreted in 

terms of large scale vegetation growth conditions. Regarding 

for these, researchers commonly perform VIs value 

thresholding based on their knowledge and data characteristic 

[1,13,33,34,39,64-66]. In particular, the Normalized Differ-

ence Vegetation Index (NDVI) had been employed for vari-

ous research fields.  

However, spectroscopy and spectral analysis are still 

facing an unsolved obstacle from monitoring scale. The spec-
tral response properties of crop canopy have been found to 

depend on atmospheric (e.g., illumination, cloudy shadow), 

edaphic (e.g., soil type, soil moisture), and biotic conditions 

(e.g., crop variety, leaf area index), as well as field manage-

ment strategies [61,67]. Even though the present studies indi-

cate that it is possible to accurately identify crop stress with 

spectral features under laboratory conditions, but in most 

cases, it is still unpractical to do so when performing field-

scale even aerial monitoring. Additionally, different disasters 

might have the same characteristics of spectral response, 

which can lead to difficulty in discriminating different stress-
es. The in-deep theory basis of fluorescence remote sensing 

in plant were still undiscovered; and their potentiality and 

application are still lacking research gaps [1,68]. 

 

2.3 Mapping, classification and detection 

with imagery 
 

Remote sensing image interpretation usually involves 

identification methods to map out target. Undoubtedly, the 

advancing classification methodologies in remote sensing 
data are pushing agricultural applications forward.  

Basically, the image classification methods can be cate-

gorized as: statistical-based and machine learning-based. 

Most of methodologies can be universally implemented in 

multi-spectral and hyperspectral image. The frequently 

adopted classification methods for crop area mapping include 

unsupervised/supervised classification, and decision tree 

classification. Using unsupervised classification to cluster 

pixels in a dataset is only based on data statistics, which in-

cludes ISODATA and K-Means. On the other hand, the use 

of supervised classification requires user-defined training 

classes which include Parallelepiped, Minimum Distance, 
Mahalanobis Distance, Maximum Likelihood, Spectral In-

formation Divergence (SID), and Binary Encoding. Indeed, 

the amount and quality of the available training samples play 

an important role to obtain accurate land classifications. 

Hyperspectral imaging can discriminate classes with 

very fine spectral signatures. There are many commonly used 

analysis techniques for hyperspectral remote sensing image: 

spectrum matching method, such as Spectral Angle Mapping 
(SAM) and Spectral Feature Fitting (SFF); sub-pixel method, 

such as Spectral Mixture Analysis (SMA), and Mixture 

Tuned Matched Filtering (MTMF) [1,11,41,69], etc. As spec-

tra reflectance of plant will be change when suffering from 

stresses, by compared to healthy crop, the severity of spectral 

features is determined by separability between classes. Be-

fore performing image classification, the spectral features are 

measured using ground-based imaging spectrometers by 

sampling the training data from identified area.   

In recent years, the kernel-based machine-learning im-

age classification techniques have been recognized, e.g., Ra-

dial Basis Function Neural Networks (RBFNN), Support 
Vector Machine (SVM) [59]; These approaches are robust to 

the Hughes phenomenon and can provide reasonably high 

classification accuracy [29,30,69]. Data mining approaches 

had been adopted in risk assessment of flood using multi-

temporal remote sensing images [16]. Besides, classification 

methods could be flexibly integrated together to generate 

higher accuracy (e.g., Hierarchical classification scheme 

[33]; integrated with linear mixture model or neural network 

[70]). Object-oriented classification strategy is superior to 

pixel-based classification especially for high spatial resolu-

tion image [71,72]. Likewise, hierarchical segmentation of 
hyperspectral images should be further developed as it great-

ly enhances the classification capability [69]. Nevertheless, 

there are still numerous kinds of hyperspectral image pro-

cessing techniques concerning feature extraction, endmember 

extraction, anomaly target detection, etc. Nevertheless nu-

merous methods were mentioned, they are more or less use-

ful for agricultural disasters detection. 

Additionally, knowledge-based classification methods 

are commonly used in large scale agricultural mapping. Ap-

proaches such as a combination with remote sensing imagery 

and geo-information data to distinguish crop area and types 
[5]. In general, evidences suggested that frequent remote 

sensing imagery and ancillary information such as climate-

zoning, local cropping rotation system, phenological calen-

dars, and topography would improve crop area classification 

[73,74]. 

Natural disasters will probably result in land cover 

change before and after occurrence. According to Manakos 

and Braun (2014)[30], several methods were introduced to 

tackle with change extraction: (1) Image algebra, which leads 

to change extraction based on spectral values, backscatter 

values, spectral indices, texture features and related proper-

ties; (2) Transformation-based change extraction uses trans-
formed images properties such as principal components anal-

ysis (PCA); (3) Classification based approaches; (4) Time 

series analysis, seasonal and abrupt changes are easily identi-
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fied due to the variation in time series profile (see Figure 3). 

The idea of implementing time-series remote sensing data 

provide a new perspective for classification and land use 

change detection [33,70,75]. Spatiotemporal analysis with 

time-series data, researchers can monitor vegetation growth 

cycles and timings over large areas; and recognize the spatial 
distribution of potential agricultural disasters. 

 
Figure 3. Time-series remote sensing data represents spatiotemporal 
characteristics of ground features. 
 

Image classification plays a crucial role in remote sens-
ing of agriculture; no argument should be made because agri-

cultural disasters are related to so much knowledge that is 

beyond the technologies themselves. The performance of 

classification is quite objective-oriented that is depends on 

researcher’s spatial scale and spectral signatures of land-

cover classes [30]. 

 

3 Remote sensing of agriculture disas-

ters 
 

The remote sensing application in disasters monitoring 

including drought, flooding, low temperature, and crop dis-

eases and pests damage were briefly reviewed. 

 

3.1 Drought 
Drought is one of most important weather-related natural 

disasters. Drought is a slow process which influences vegeta-

tion growth. It begins with precipitation/watering deficit, 

followed by soil moisture deficit, and then leads to crop fail-

ures [20,45,76]. Remote sensing can measure rainfall, tem-

perature, vegetation growth condition, soil water content 

which are necessary parameters when concerning drought 

monitoring and forecast. 
Monitoring drought with remote sensing is based on 

two basic principles. First, changes in soil water content can 

lead to spectral reflectance variations in soil; second, soil 

water content can cause physiological changes in plant, and 

then change the spectral characteristics. Most commonly 

used crop canopy-level and satellite-level remote sensing 

involve vegetation indices-based and thermal infrared-based 

methods to obtain a quantitative description of crop water 

status [13,27,76,77]; such as Crop Water Stress Index 

(CWSI). Thermal infrared and microwave band data can get 

good indicators in crop water status [2]. There are numerous 

drought monitoring methods using remote sensing; different 

approaches have their own advantages and limits; the ap-

plicability of remote sensing-based drought monitoring 

should be considered both arid and humid regions as well as 

multi-sensor data [78]. 
Typically, NDVI has been employed to assess vegeta-

tion growth conditions by inspecting the variations of year-

to-year NDVI value to identify drought occurrences [19,79]. 

Zhang et al. (2013) modified NDVI time series data to con-

struct a time-integrated vegetation condition index to identify 

real-time drought [64]. Zhang and Jia (2013) developed a 

multi-sensor microwave remote sensing drought index, by 

integrating three remote sensing observations: TRMM-

derived precipitation, AMSR-E-derived soil moisture, and 

AMSR-E-derived land surface temperature [50]. Similarly, 

Du et al. (2013) suggested a comprehensive drought monitor-

ing using synthesized remote sensing spectral indices: precip-
itation, soil water content and vegetation. They used TRMM, 

LST and NDVI to forecast drought occurrences [76]. Be-

sides, as drought is usually related to local water supply and 

crop phenology stages, extracting such background with re-

mote sensing is implicitly preferable for drought early warn-

ing and assessment [80,81].  

Several case studies had used agricultural physical 

model, which allows the scenario-based analysis of drought-

induced yield losses and evaluate the large-scale grain pro-

duction[24]. To identify drought, Zhong et al. (2014) used a 

physical model to obtain drought condition, whose model-
required land surface parameters, such as temperature, sur-

face albedo, NDVI, and emissivity, had been derived from 

AVHRR and MODIS data [82].  

 

3.2 Flood and waterlogging 
Flood is a temporary inundation of normally dry land 

with water, suspended by overflowing of rivers, precipita-

tion, storm surge, tsunami, waves, mudflow, lahar, failure of 

water retaining structures, groundwater seepage and water 
backup in sewer systems.  

Frequent, long time-series remote sensing data allow 

monitoring perennial flooded area that provides a regional 

flood risk assessment [16,83]. Hydrological or meteorologi-

cal data provide only point-based information; remotely 

sensed data is able to map out the characteristics of flood 

inundation across large river basins [16,28,83]. Frequent oc-

currences indicates that actual induce of floods is related to 

the forest cover change and meteorological forcing [22]. 

More importantly, enhancing prediction for flood occurrence 

and crop losses assessment is crucial; by integrating remotely 
sensed parameters with hydrological models for flood fore-

cast [28] and by integrating with socioeconomics strategies 

to estimate agricultural crops losses using remote sensing 

[16].  

Compared to flood, waterlogging is saturation by 

groundwater which is sufficient to prevent or hinder crop 
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growth, but not as devastating as flooding; excessively wet 

condition is capable of depressing grain yield [12,84,85]. It is 

difficult to identify waterlogging damage to plant. Mandal 

and Sharma (2011) had adopted multi-temporal satellite im-

ages to extract waterlogged area based on spectral properties 

using visual interpretation with field-survey [85]. Based on 
the time-variation in multi-temporal MODIS data (VIs, LST, 

and albedo), the ecological and thermodynamic characteris-

tics of the waterlogged croplands were analyzed and identi-

fied [84].  

 

3.3 Low temperature 
 

Low temperature hazards are usually regarded as 

chilling, frost and freeze injury. Chilling injury to plant is 
caused by low temperatures above the freezing point; while 

frost injury and freeze injury probably occur when tempera-

ture is below the freezing point when plants are damaged by 

ice crystal forming within their tissues.  

Satellite remote sensing estimations have been used to 

delineate areas of chilling injury. As the crop growing season 

from sowing to maturity requires a certain growing degree 

days (GDD) which represents accumulation of heat units, 

low temperature injury assessment can be achieved using 

land surface temperature derived from remote sensing obser-

vation [35,36]. Based on the considerable high correlation 
between satellite-derived LST and air temperature record 

from meteorological station, the GDD estimated from time 

series MODIS-LST data could be used to evaluate the 

chilling injury throughout the growing season [35,46]. Be-

sides, risk of chilling injury will also be affected by geo-

graphical background, such as local cropping system (i.e., 

double cropping would probably be more risky to suffer) and 

agricultural activities arrangement (i.e., planting and harvest-

ing) [23,34]. 

In early 2008, freezing rain and snow suddenly hit the 

South China which lasted for a long time and caused enor-

mous losses. The AMSR-E passive microwave-retrieval of 
land surface temperature allowed dynamic monitoring the 

disaster progress [52]. Freezing damage had jeopardized the 

vegetation's growth, and even caused physical death. 

Ground-based and satellite-based remote sensing monitoring 

could indicate the fluctuation of vegetation due to extreme 

weather conditions according to plant spectral reflectance 

[86,87], such as tremendous drop in vegetation index. In She 

et al.’s research (2015), the NDVI variation was chosen as an 

indicator for crop damage; the geographical factors that may 

affect the susceptibility of freeze injury were mapped out 

[65]. In Feng et al.’s research (2009), winter wheat freeze 
injury was monitored using MODIS data, combined with 

ground meteorological data and field survey data [88]. In Liu 

et al.’s case (2014), they explored cold damage severity level 

of mangroves forest by associating the damage with weather 

factors (wind direction and velocity) and landscape factors 

(elevation, surface slope, and aspect) [89]. 

 

3.4 Crop diseases and pests damage 
 

Plant diseases and insect pests are responsible for major 

economic losses in agricultural industry worldwide. Monitor-

ing plant health and detecting pathogen in an early manner 

are essential to reduce disease spread and facilitate effective 

management practices [10,11,53]. 

Crop diseases and pests damage would cause plant 

change in morphology and biochemistry, such as leaf pig-

ment change and water content lost. Through laborato-

ry/field-based observation, spectral features of crop act intui-

tive response via spectroscopy [10,11,13,90]. Literatures 

have summarized spectroscopic and imaging techniques in-

cluding fluorescence, visible-infrared, thermal infrared and 
microwave wavelengths, various types of spectral analysis 

methods, as well as various scales spanning from single leaf 

to a large region [4,10,91].  

To identify crop pests and diseases damage, the symp-

tom can be quantified by spectral reflectance using sensitive 

band selection, principal component analysis, partial least 

squares regression  and vegetation indices [1,4,10,58,61]. 

Cheng et al. (2010) used continuous wavelet analysis for the 

detection of water deficit in infested and girdled tree [62]. 

The limitation in large scale remote sensing monitoring for 

crop pests/disease is explicit; the anomalism is quite subtle 
making visual interpretation difficult. Even so, it was report-

ed that utilizing the multi-temporal/spectral data is capable of 

mapping out severe plant diseases; by incorporating with 

field investigation, high spatial resolution satellite image 

with proper classification techniques can be used to detect 

plant diseases/pests damage in cropping area [21,90]. At pre-

sent, the increasing availability of small, inexpensive sensors 

has enhanced the operational remote sensing through UAV 

for crop disease/pests monitoring at the farm scale [1,31]. It 

is still unable to detecting all the types of crop diseases/pests 

damage as remote sensing detection is ‘disease specific’ and 

‘site-specific’ [21]. 
As a matter of fact, the risk of crop pests/disease occur-

rence would probably relate to their ecological factors (tem-

perature, precipitation, cropping area and phenology, 

etc.)(see Figure 4); the satellite earth observations are useful 

in monitoring ecological conditions favorable for crop pests 

and diseases[17]. Ecological conditions such as temperature, 

humidity, sunshine hours and wind play major influence on 

the crop pests’ population; through remote sensing and GIS 

spatial analysis, researcher can simulate scenarios of diseases 

spreading, to identify potential infected area [91]. For the 

purpose of crop protection, it is more practicable to assess the 
damage at an earlier stage than detecting the insects them-

selves [59]. 
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Figure 4. Identifying insect pests’ habitat is helpful for early warn-
ing and prevention. 

 

3.5 Others 
 

Besides those common disasters mentioned above, natu-

ral disasters include heavy rain, landslide, hail storms and 

typhoon which can lead to substantial crop failures by physi-

cal damage in crop canopies [12]; However, these devasta-

tive disasters and their impacts on coastal fisheries are not 

considered in this review due to limited literature for refer-

ence. 

 

4 Recent advances, opportunities and 
challenges 

 
Remote sensing of agriculture had already benefited 

from agricultural sciences, advanced remote sensors and GIS 
application. Additionally, wireless sensors network, UAV 

platform, physiology-based crop yield modeling, high-

performance computational capacity, etc.; these technologi-

cal breakthroughs create tremendous opportunities. Conse-

quently, it is our firm belief that bridging the gaps between 

remote sensing observation and current advancing technolo-

gies will propel remote sensing into practical applications. 

Herein, this review paper suggested several frontiers for agri-

cultural disasters monitoring based on the recent advances in 

remote sensing. 

 

4.1 Multi-sources data fusion 
 

Traditionally, good examples for fusion of remote sens-

ing images are to merge the visible/infrared multispectral 

images with higher resolution panchromatic image, known as 

‘pan-sharpening’[5,92]. To this day, data fusion had been 

developed diversely and image fusion for agriculture has 

many aspects to be looked at. In Shi et al.’s perspective 

(2014), a strong demand of information integration from 
multi-sources, multi-sensors, and multi-scales is urging in 

comprehensive agricultural monitoring, modeling, and man-

agement [93]. Ozdogan et al. (2010) had pointed out the op-

portunity and challenge of agriculture-related remote sensing 

information are currently being captured by a number of sat-

ellite-based sensors with different spatial, spectral, temporal, 

and radiometric characteristics. By taking advantage of char-

acteristics from different data sources, researchers can better 

understand the dynamic process of disasters and perform 

dynamic monitoring [73] (see Figure 5). 
Originally, the concept of downscaling of satellite im-

age was proposed suggesting that SPOT VEGETATION (1 

km resolution) is to be merged with multispectral HRV at 

20m resolution [92]. The development of data fusion tech-

niques help to hatch a unified framework that can potentially 

generate synthetic satellite images with high spatial, temporal 

and spectral resolution [94,95]. Several research cases could 

be found: the coarse-resolution land surface temperature 

from geostationary satellite had been downscaled to higher 

spatial resolution for urban heat island monitoring [96]; 

downscaling MODIS VI/LAI products to Landsat TM/ETM+ 

resolution level, aiming to build a high spatial-temporal reso-
lution time-series data set [94,97]. In the field of hydrology, 

the image downscaling method has been used to improve 

spatiotemporal resolution of remote sensing-based ET maps 

for irrigation scheduling purposes [98-100]. To this end, we 

had confidence that such technique will be eventually im-

plemented for agricultural disasters monitoring.  

 
Figure 5. Remote sensing data play different roles in application 
according to their spatial and temporal difference. Data fusion sug-
gests taking advantage of scale and repeat cycle. 

 
Most of the synthesis methods would have a common 

trait is that ancillary data (e.g., DEM, albedo, etc.) are re-

quired. As we had reviewed the research cases above, remote 

sensing data would not work solely to cope with disasters. 

Apparently, satellite in-orbit had provided various types of 

data sources for synthesis. Terra/Aqua MODIS data had al-

ready provided more than 20 remote sensing products global-

ly. Zhang et al. (2013) used MODIS-LST, EVI, together with 

DEM value to establish multi-variable regression function for 

estimating air temperature [35], to map the heat accumulation 

for crop growing season. Agricultural disasters may some-

what related to their natural environment (e.g., low-
temperature injury, waterlogging, drought); therefore remote-

ly sensed-derived land surface parameters are useful for spa-

tially modeling to extract interesting area [23,50,65,84]. The-

se examples will be ideal add-on strategies for regional disas-

ters zoning. 

There is a significant potential of utilizing archived re-

mote sensing data to assess the data continuity and comple-

mentariness [101]. The various sensors have different tech-
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nical specifications, including primary wavelength, spatial 

resolution, and temporal frequency. Vegetation monitoring 

for global/regional ecosystems is critical to gain a better un-

derstanding of processes related to agricultural change over 

long periods [101,102]. Therefore, it is crucial to better un-

derstand the differences in time series products acquired 
from different satellite data archives (e.g., NOAA-AVHRR, 

SPOT-VGT and MODIS), for the purpose of continuously 

mapping crop phenology, soil moisture, et al. Integration of 

multi-sources satellite data with different spectral, spatial, 

temporal resolutions is now an important research frontier 

and maybe of great benefit.  

Here, the term ‘data assimilation’, is an analysis tech-

nique which integrates not only remotely sensed data, but 

also the observed information accumulated into the model 

state by taking advantage of consistency constraints with 

laws of time evolution and physical properties; it also serves 

as an innovative parameter estimation method for 
agroecosystem dynamic models [5,6]. On one hand, there are 

many different assimilation algorithms available in the litera-

tures from meteorology, hydrology that may useful for agri-

culture. 

 

4.2 Integration of model with remote sens-

ing data 
 

Unexpected climate factors indicate risk evaluation is 

critical for agricultural disasters management; early-warning 

efforts in agriculture appear particularly important. However, 

due to the lack of effective forecast capacity by using remote 

sensing solely, the agriculture relevant models have the ca-

pabilities to quantify crop biophysical/biochemical parame-

ters [3,5,6,45]. Generally, there are three categories of mod-

els related to agricultural remote sensing: empirical models, 

physiological models and crop growth models [5,6,103]. 
Models are served as crucial tools for early warning and pre-

diction of agrometeorological disasters, e.g., hydrological 

and meteorological model are commonly used for the disas-

ters forecast; crop growth model is a very effective tool for 

predicting possible impacts of climatic change on crop 

growth and yield [12]. As numerous agroecosystem-related 

models exist, in this review we would mainly discuss 

radiative transfer model and crop growth simulation model. 

The radiative transfer models (RTM) is capable of ex-

plaining the nature of the measured plants biophysical or 

chemical parameters, and inversing such parameters for 
characterizing the growth state of the crop under observation 

[6,103]. Most radiative transfer models are usually linked 

with optical remote sensing reflectance through numerical 

inversion methods with the purpose of inferring leaf or cano-

py properties [5,6,11,43,56], such as LAI, FPAR, chloro-

phyll, water content, etc. Remote sensing images acquired 

from satellites or airplanes provide large scale information on 

crop characteristics (e.g., growth, nitrogen status); thus in-

versing crop parameters through radiative transfer models 

can reflect disasters impact on crop condition. 

Crop growth model simulates crop production poten-

tials dictated by environmental conditions (e.g., soils, cli-

mate), crop characteristics and crop management (e.g., irriga-

tion, fertilizer application) [3,5]. The significant advantage of 
combination of crop growth model and remote sensing is to 

dynamically evaluate the large-scale yield production [3]. In 

some European countries, crop growth models such as 

WOFOST (WOrld FOod STudies) and DSSAT (Decision 

Support System for Agrotechnology Transfer) have been 

used at the Institute of Meteorology, Faculty of Agronomy 

etc. They are used not only to assess the crop yield at a re-

gional scale, but also for climate impact assessment and ad-

aptation practice improvement [12]. In recent years, substan-

tial efforts had been made to improve the use of crop model 

for observing, mapping, and modeling crop yield.  

The use of remotely sensed information to improve crop 
model simulation was proposed as early as three decades 

ago. There are different ways to combine a crop model with 

remote sensing observation: (1) direct use of a driving varia-

ble estimated from remote sensing data into the model; (2) 

updating a state variable of the model (e.g., LAI, ET) derived 

from remote sensing; (3) re-initialization of the model, i.e., 

the adjustments of an initial condition to obtain a simulation 

in agreements with the remote sensing-derived observations 

[6,13,104]. More often, the crop growth model can simulate a 

variety of outputs, such as biomass, phenology, soil water 

content, evapotranspiration, etc.; those simulations are al-
ready remotely sensed obtainable. By assimilating the pas-

sive microwave remote sensing-derived soil moisture into 

crop growth model can help to assess yield loss due to 

drought [105,106].  

A lot of case studies illustrate the potential interest of 

data assimilation for working with crop model to perform 

regional yield simulation (see Figure 6); they had presented 

how the data provided by remote sensing observation are 

used to adjust the model parameters to improve simulation 

accuracy. Uncertainties in spatial temporal distribution of 

rainfall, soil properties, and regional management levels 
comprise the error in crop model simulation results. For this 

purpose, there are research cases addressing this demand. De 

Wit and van Diepen (2007) used the Ensemble Kalman Filter 

(EnKF) to assimilate microwave-derived soil moisture esti-

mates into model for correcting errors in the water balance of 

WOFOST crop model [106]; Li et al. (2014) used EnKF al-

gorithm to integrate LAI data into a fully coupled hydrology-

crop growth model to obtain the spatial distribution and re-

gional variation in maize yield [104]; Ines et al. (2013) had 

developed the EnKF-DSSAT-CSM-Maize data assimilation 

framework that incorporates remote sensing-derived soil 

moisture and LAI into a crop model [26]. 
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Figure 6. A simple schematic for assimilation of remote sensing 
data into crop models (the parameters optimization method). 
 

4.3 Information technologies 
 

There is a significant potentiality in Precision Agricul-

ture combined with remote sensing data for improving agri-

cultural management [4]. Agricultural disasters managements 

and Precision Agriculture share the same technical benefit 

involving data collection/analysis and information manage-

ment; as well as technological advances in computer pro-

cessing, field positioning, yield forecast, remote detecting 

instruments, and pattern recognition on field-based crop bio-
tic stress detection (e.g., weeds, diseases and pests damage) 

[4,54,59]. 

The Internet of Things (IoT) is a new information sys-

tems paradigm that comprises physical objects and electronic 

devices [107]. Relying on wireless-sensors network, re-

searchers can obtain field-based monitoring data such as soil 

water content or crop growth condition from a long distance 

[108]. The 3G/4G mobile telecommunications are supporting 

the wireless-sensors network and multi-media transmission. 

The sophistication and availability of the Internet systems 

allow rapid real-time multi-media transmission for farmland 

condition data and assembling data of field-based crop 
growth situations [54]. Herein, observation and expert deci-

sion making from a long distance allow taking measures in 

time to tackle with agricultural disasters and avoid the spread 

of contagious disease. With various sources of sensors (wire-

less sensors, satellites/airborne image, real-time weather sta-

tion, etc.), a novel opportunity of agricultural monitoring is 

to integrate multi sources data together via data assimilation, 

e.g., assimilating the observed data into agroecosytem mod-

els for simulating evapotranspiration, crop growth and poten-

tial yields [93,108]. 

 

4.4 High-performance computing 

 
With the explosive increase of available data, the rapid 

processing of remote sensing data is essential in large-scale, 

real-time monitoring; the data storage, processing and distri-

bution are facing obstacles [32,93,109]; timely retrieval of 

agricultural disasters information is very crucial for policy 

makers, which requires fast processing of remote sensing 

production. Specifically for hyperspectral remote sensing 

images, there is a need to develop cost-effective strategy that 

is able to speed up processing and to satisfy the extremely 

high computational requirements [69]. Besides, when remote 

sensing is to be coupled with complex physical model (i.e., 

crop growth simulation model), the regional assessment and 
prediction require considerable high computing capacity 

[110]. That was why many well-established agroecosystems 

prompted practitioners and developers to be familiar with 

issues of parallel and distributed computing systems [6]. 

To satisfy with the needs of real time, fast transmission 

and processing with remote sensing massive data, Grid Com-

puting and Cloud Computing architecture can provide higher 

efficiency and velocity for processing [32,111]. Grid is a 

collaborative computing environment based on multi-

machine (i.e., WLAN network); Parallel Computing uses 

many computer nodes (i.e., CPU core); computation tasks are 
the significant features of Grid/Parallel computing [111,112]. 

Cloud Computing is a supercomputing paradigm based on 

the Internet, which makes use of computer nodes in the 

Cloud cluster through Internet to complete a computing task 

in parallel [32]. Zhao et al. (2012, 2013) developed hybrid 

high-performance computing techniques (i.e., combine Paral-

lel and Grid Computing) to handle and accelerate the perfor-

mance of large scale, complicated agricultural systems mod-

eling [112,113]. 

With the development of open-source software and pro-

gramming languages, it becomes possible to develop custom-

ized analysis algorithms and provide a friendly user interface 
for applications. Herein, Cloud Computing can automatically 

organize resources that are transparent to users in the Cloud. 

The continuous-evolving Internet is a powerful tool in facili-

tating the exchange of remote sensing data for rapid disasters 

monitoring online. Data storage in the Cloud provides a safe 

and convenient way for big-data management; hence, the 

Big-data analysis in remote sensing of agricultural disasters 

will be in the near future [109]. 

 

5 Discussion 
 

For a long time period, people’s knowledge on remote 

sensing in agricultural disasters is intuitive observation; re-

search cases had demonstrated that agricultural remote sens-

ing is far beyond mapping; with the knowledge deepened, 

monitoring and modeling disasters will definitely and contin-

ually play an important role. Challenges still require further 
investigation and consolidation in agricultural remote sens-
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ing: (1) selection and optimization of the techniques for a 

specific disaster; and (2) applying the techniques for practical 

monitoring of disaster under real-world field conditions.  

For instance, the review above indicates that we need to 

know which sensors, spectral bands or analysis techniques 

should be suitable for detecting a disease, but there are great 
differences in conducting an effective and solid research 

among so many candidates. Specifically, as crop yield for-

mation will be a result from various ecological factors, yield 

loss may be related to drought, heavy rain, or insect’s dam-

age. Question is that how to discriminate plant disease from 

several conventional stresses (e.g., nitrogen, water deficien-

cy) by spectroscopic analysis? Another commonly discussed 

question is the ‘scale’ problem. Even though the present 

studies indicate that it is possible to accurately identify crop 

stress with spectral features under laboratory conditions, but 

in most cases, it is still unpractical to do so when performing 

field-scale even aerial monitoring. How to bridge the gaps 
between remote sensing data from different scale? Besides, 

yield prediction and loss modeling are still quite uncertain. 

These questions above are still unaddressed. Lacking of reli-

able loss record from disasters events also hinders loss as-

sessment using remote sensing while validations is consid-

ered critical.  

Planning, early warning and well-prepared measures are 

major tactics for mitigating the agricultural disasters losses, 

researchers should deepen and broaden the study of the disas-

ters occurrence mechanism, improve the ability of detecting 

agricultural disasters from remote sensing, as well as the 
ability of comprehensive analysis and scientific judgment. 

The induced-factors for disasters (e.g., temperature, precipi-

tation, etc.) are crucial for early warning, as remote sensing 

data could provide such environmental indicators in large 

scale. Although the theories behind had not been fully estab-

lished, at least, remote sensing had been proved a vigorous 

research topic by combining with other data (e.g., field sur-

veys, GIS databases). As remote sensing science had been 

gradually evolved from theoretical to practical, by taking 

advantage of the recent advances, it will definitely play an 

important role in agricultural disasters mapping, monitoring, 
and modeling.  

Particular efforts are needed to develop and consolidate 

remote sensing approaches for different disasters, integrate 

different data sources and perform practical losses estima-

tion. Last but not least, the consequence from disasters re-

quires that remote sensing is not only aiming to map out af-

fected target, but also provide information for the govern-

ment to carry out disasters management practice, such as 

assessing losses and making rational decisions for agricultur-

al insurance payment. 

 

 
 

 

6 Conclusion 

 
A series of literatures on disaster reduction and mitiga-

tion had been collected to support the motivation for writing 

this review paper. Above all, based on the recent advances in 

remote sensing community and research cases reviewed 

above, to the best of our knowledge, here we add several 

indicators for the future direction. 

 

6.1 Fully understanding the merit of remote 

sensing 
 

In the public’s point of view, remote sensing in agricul-

tural disasters is viewed as an intuitive phenomenon of phys-

ical damage; while the process and occurrence of disasters 

may be invisible. Hence, at present the awareness of the ben-

efit has not received much attention to remote sensing tech-

nology. Remote sensing technology should play its critical 

role in disasters mitigation, by acquiring environmental and 

ecological parameters. Conventionally, the integration of 

remote sensing data with GIS spatial-analysis for risk as-

sessment is an essential component of disaster preparedness 
and mitigation; meanwhile, as agrometeorological disasters 

are quite weather condition-driven, remote sensing-derived 

parameters such as temperature, rainfall, and soil moisture 

will be invaluable data for disasters monitoring and model-

ing. There are strong evidences and significant trends indicat-

ing that multi-sources remote sensing data will support 

agrometeorological disasters risk zoning and modeling. For 

instance, spatial modeling of crop pest’s habitats area has 

been proved its potentials in insect pest ecology and man-

agement. 

 

6.2 Quantitative assessment of remote sens-

ing-based disaster monitoring  
 

Damage assessment is an essential part of disasters man-

agement; at present, remote sensing data are basically used 

for obtaining crop spatial information, or used as ancillary 

data source in disasters management. However, when facing 

complex disasters situation, few substantial research article 

had been reported to execute the observing, mapping, and 

modeling disaster processes which leads to agricultural loss-

es. Hence, the assessment of loss will still need to integrate 
with physical model or socioeconomics methods for quantifi-

cation.  

 

6.3 Strengthening early warning capability 
 

Damage from catastrophic events is both social and 

economic relevant. Further studies should aim to bring more 

awareness of the occurrence and consequence of agricultural 
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disasters that will eventually drive people’s attention towards 

taking measures for prevention. Herein, the cooperation 

among agrometeorologists, institutes and government agen-

cies is important. For instance, remote sensing can allow 

early diagnosis or forecast the disease symptoms before oc-

currence; through priori control strategies such as pesticide 
applications, and disease-specific chemical applications, 

famers can avoid dissemination and yield loss. Besides, re-

mote sensing provides government agencies and insurance 

companies a rapid damage assessment for disasters impacts. 

Therefore, researchers are encouraged to take advantage of 

both remote sensing and agroecosystem model in simulation 

of climate change scenarios beforehand. 

 

6.4 Synergy of multi-sources data for disas-

ters monitoring 
 

Agricultural disasters monitoring will probably involve 

cropland mapping, crop type identification, and change de-

tection; the accuracy has been improved by integrating vari-

ous classification methods, multi-source remote sensing data 

fusion, incorporating with auxiliary geoinformatics data and 

expert knowledge. Synergy relates to the utilization of two or 

more data sources together in order to extract more infor-

mation than the utilization of each individually. Research 

cases indicate a conceptual framework that multi-sources 

data work corporately in earth observation: all-weather LST 

mapping using gap-filling by merging MODIS and AMSR-E 
data; spatio-temporal interpolation of daily observation in 

time series remote sensing data [47,48,114]; for drought de-

tection, considering the remotely sensed factors including 

phenology, meteorology, hydrology and land surface pa-

rameters makes the result more convincible [76,78]. Special 

attention should be given to the potentiality of synthesis of 

spatial, spectral, and temporal resolution of satellite data, by 

taking their respective advantages. For instance, NASA’s 

Earth Observation System, ESA-Sentinel series, and China’s 

Gaofen series remote sensing satellite will definitely enhance 

the capability of agricultural disasters observation.  
 

6.5 Emerging advanced technologies for 

improving disaster monitoring 
 

A rapid, cost-effective and reliable sensor system is crit-

ical for monitoring crop status under field conditions. Im-

plementing the Precision Agriculture technologies makes the 

field-scale disasters monitoring more intelligent and automat-

ic. The spectroscopic or imaging-based sensors could be in-

tegrated with an agricultural vehicle or UAV-based applica-

tions for field-based plant disease detection to achieve supe-
rior control and management. Newly development of Preci-

sion Agriculture includes computation sciences, the Internet 

of Things-based wireless transmission, mechanical engineer-

ing, etc.; by taking full advantage of the ongoing technology, 

human being were able to effectively tackle with field-based 

natural disasters. Monitoring and modeling agricultural disas-

ters with remote sensing data requires not only computational 

capacity, but also advanced technology. Fortunately, the 

computer sciences are continually supporting this trend. 
 

6.6 Bridging the gaps between experi-

mental study and practical application 
 

As remote sensing techniques have been operationally 

used in agricultural monitoring, they should actively play a 

role in agro-advisory service for the policy-maker to tackle 

with disasters. Farmers do have a considerable interest in 

knowing climate stresses, pests and diseases that would cause 

yield reduction; making valuable advisories for field man-

agements will be truly beneficial for the farmers. 
As literature reviewed above, remote sensing have 

evolved as no more a untouchable technique for the public 

today; researchers are undertaking the mission which makes 

civilian acceptable and accessible to such techniques, making 

it low cost, customizing solutions in different scales; these 

efforts will be truly benefit for the end-user in agricultural 

production. There is an urgent need for developing standards 

for data processing flow and analysis system, which would 

allow fast data processing to generate reliable remote sensing 

product; and an urgent need for establishing criteria in agri-

cultural disasters monitoring and evaluation. To achieve the-
se goals, the construction of telecommunications facilities, 

practical application of cases and well-trained personnel are 

crucial.  
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